

CASE STUDY WP6400. Inland Water : Amazon River

N. Bercher, Along-Track S.A.S.

Demonstrate usefulness of the DeDop tool in terms of

- Usability & design
- Adequacy for the monitoring inland water
- Algorithms & Computational Performances
- Benefits of a configurable delay-Doppler processor
- Benefits of an open source code base

Regarding Inland Water

 Quantify accuracy of well-configured delay-Doppler processor vs. basic configuration

Secondary objectives

- Produce & examine Waveforms
- Elaborate L2 data despite the absence of:
 - L2 corrections: Wet/Dry tropo, Geoid model
 - Retracking algorithm
- Produce L3 data: River Water Level (RWL) time series
- Perform validation of the L3 RWL against gauging data
- Analyse and comment results, provide recommendations

INLAND WATER CASE STUDY DeDop Core: L1A to L1B Processing

- Input: Sentinel-3A L1A files from scihub
- Add-on tool from ALONG-TRACK: dedop_run_scheduler
- Output: L1B files

https://github.com/nbercher-atk/dedop_run_scheduler

- Input: Sentinel-3A L1A files from scihub
- Add-on tool from ALONG-TRACK: dedop_run_scheduler
- Output: L1B files for <u>2 different DeDop configurations</u>

Parameter	Conf. #1: Basic	Conf. #2: Inland Water
Azimuth Windowing	None	Hamming
Azimuth Processing Method	Approx	Exact
Zero Padding Factor	1	2

Main steps of the L2 Processor

- 1. Read input netCDF L1B data files
- 2. Compute Waveforms alignment w.r.t. the on-board tracker
- 3. Compute Geoid undulation, add static correction value
- 4. Run Ice1 retracker on Waveforms

6

Main steps of the L3 Processor

1. Water masking (SWBD-Edited) \rightarrow boolean flag variable

2. Compute surface height from Ice1 range & corrections:

- Geoid undulations (EIGEN-6C4+DTU13)
- Static range corrections
 (estimated from Jason-3 GDR-d data, same place, same time)
- 3. Outliers rejection
- 4. "One per Overflight" routines (remove high frequency in RWL time series)

Main steps of the L3 Processor

1. Water masking (SWBD-Edited) \rightarrow boolean flag variable

2. Compute surface height from Ice1 range & corrections:

- Geoid undulations (EIGEN-6C4+DTU13)
- Static range corrections
 (estimated from Jason-3 GDR-d data, same place, same time)
- 3. Outliers rejection
- 4. "One per Overflight" routines (remove high frequency in RWL time series)

Main steps of the L3 Processor

1. Water masking (SWBD-Edited) \rightarrow boolean flag variable

2. Compute surface height from Ice1 range & corrections:

- Geoid undulations (EIGEN-6C4+DTU13)
- Static range corrections
 (estimated from Jason-3 GDR³/₃)
 data, same place, same time)

atitude

- 3. Outliers rejection
- 4. "One per Overflight" routines (remove high frequency in RWL time series)

WP6400. Inland Water : Amazon River

Main steps of the L3 Processor

1. Water masking (SWBD-Edited) \rightarrow boolean flag variable

2. Compute surface height from Ice1 range & corrections:

- Geoid undulations (EIGEN-6C4+DTU13)
- Static range corrections
 (estimated from Jason-3 GDR)
 data, same place, same time)
- 3. Outliers rejection
- 4. "One per Overflight" routines (remove high frequency in RWL time series)

Main steps of the L3 Processor

1. Water masking (SWBD-Edited) \rightarrow boolean flag variable

2. Compute surface height from Ice1 range & corrections:

- Geoid undulations (EIGEN-6C4+DTU13)
- Static range corrections
 (estimated from Jason-3 GDR data, same place, same time)

atitude

- 3. Outliers rejection
- 4. "One per Overflight" routines (remove high frequency in RWL time series)

ALONG-TRACK

WP6400. Inland Water : Amazon River

Overview : Add-on processing for L2, L3 & Validation

INLAND WATER CASE STUDY Results: L1B & L2

L1B Processor : Outputs analysis

Sentinel-3A Cycle 29 Track #316 Amazon River Parintins

WP6400. Inland Water : Amazon River

INLAND WATER CASE STUDY Results: L1B & L2

L1B Processor : Outputs analysis

Sentinel-3A Cycle 29 Track #316 Amazon River Parintins

Main config impact Hamming: removes side-lobe effects but alters original signal information

WP6400. Inland Water : Amazon River

L3 Processor : Output RWL time series

Sentinel-3A Cycles 5–36 / Track #316 / Amazon River / Parintins

INLAND WATER CASE STUDY Results: L3

L3 Processor : Sensibility @internal steps A, B & C Sentinel-3A Cycles 5–36 / Track #316 / Amazon River / Parintins

Table 3: Validation results for the L3 River Water Level time series. Detailed results for all steps of the L3 Processor, including: (A) L2 in water mask, (B) Outlier rejection and (C) final L3 for the two configurations #1 and #2.

L3 Processing Step	DDP Config	Nb meas.	Mean±STD (m)	RMSE (m)	Sampling Loss Rate (%)
Step A . L2 – All records in Water Mask	#1	422	-0.14±3.34	3.34	
	#2	422	-0.61±2.60	2.66	N.A. (SLR defined for
Step B. L2 - After outliers rejection filter	#1	380	0.11±1.91	1.92	L3 data only)
	#2	377	-0.07 ± 0.40	0.41	
Step C. L3 - Final: After OPO routine (median meas.)	#1	24	0.01±0.12	0.12	0%
	#2	24	- 0.01±0.13	0.13	0%

INLAND WATER CASE STUDY Results: L3

L3 Processor : Sensibility @internal steps A, B & C Sentinel-3A Cycles 5–36 / Track #316 / Amazon River / Parintins

Table 3: Validation results for the L3 River Water Level time series. Detailed results for all steps of the L3 Processor, including: (A) L2 in water mask, (B) Outlier rejection and (C) final L3 for the two configurations #1 and #2.

L3 Processing Step	DDP Config	Nb meas.	Mean±STD (m)	RMSE (m)	Sampling Loss Rate (%)
Step A . L2 – All records in Water Mask	#1	422	-0.14±3.34	3.34	
	#2	422	-0.61±2.60	2.66	N . A .
Step B. L2 - After outliers rejection filter	#1	380	0.11±1.91	1.92	(SLR defined for L3 data only)
	#2	377	-0.07 ± 0.40	0.41	
Step C. L3 – Final: After OPO routine (median meas.)	#1	24	0.01±0.12	0.12	0%
	#2	24	- 0.01±0.13	0.13	0%

INLAND WATER CASE STUDY Results: L3

L3 Processor : Sensibility @internal steps A, B & C Sentinel-3A Cycles 5–36 / Track #316 / Amazon River / Parintins

Table 3: Validation results for the L3 River Water Level time series. Detailed results for all steps of the L3 Processor, including: (A) L2 in water mask, (B) Outlier rejection and (C) final L3 for the two configurations #1 and #2.

L3 Processing Step	DDP Config	Nb meas.	Mean±STD (m)	RMSE (m)	Sampling Loss Rate (%)
Step A . L2 – All records in Water Mask	#1	422	-0.14±3.34	3.34	N.A. (SLR defined for L3 data only)
	#2	422	-0.61±2.60	2.66	
Step B. L2 - After outliers rejection filter	#1	380	0.11±1.91	1.92	
	#2	377	- 0.07±0.40	0.41	
Step C. L3 – Final: After OPO routine (median meas.)	#1	24	0.01±0.12	0.12	0%
	#2	24	- 0.01±0.13	0.13	0%

Validation of L3 RWL

Sentinel-3A Cycles 5–36 / Track #316 / Amazon River / Parintins

Config #1 "basic"

- RMSE = **0.12 m** (0.01±0.12 m)
- Config #2 "inland water"
- RMSE = 0.13 m (-0.01±0.13 m)

Table 3: Validation results for the L3 River Water Level time series. Detailed results for all steps of the L3 Processor, including: (A) L2 in water mask, (B) Outlier rejection and (C) final L3 for the two configurations #1 and #2.

L3 Processing Step	DDP Config	Nb meas.	Mean±STD (m)	RMSE (m)	Sampling Loss Rate (%)
Step A . L2 - All records in Water Mask	#1	422	-0.14±3.34	3.34	N.A. (SLR defined for L3 data only)
	#2	422	-0.61±2.60	2.66	
Step B . L2 - After outliers rejection filter	#1	380	0.11±1.91	1.92	
	#2	377	- 0.07±0.40	0.41	
Step C . L3 – Final: After OPO routine (median meas.)	#1	24	0.01±0.12	0.12	0%
	#2	24	- 0.01±0.13	0.13	0%

Conclusions

- Very high quality!
- No significant difference between configs #1 & #2
- No systematic bias!

- DeDop Core tool (v1.5.0) has been tested using Sentinel-3A L1A product files from Copernicus/Scihub to produce L1B data for two delay-Doppler configurations
- An add-on job scheduler has been developed in order to run several DeDop Core instances in parallel (along with improvement in DeDop source Code, solved GitHub Issue #31)
- A full L2 → L3 Processing stack has been added on top of DeDop Core in order to produce L3 River Water Level time series
- Validation of the L3 River Water Level has been done against gauging data and exhibits very high quality results!
- Internal L3 analysis demonstrates the benefits of a customised delay-Doppler configuration vs. a basic (ocean-like) configuration
- WARNING: Keep in mind that "Hamming windowing" alters information that might be useful indeed in the original waveforms...

- Most important recommendation: To maintain a perennial development leadership on the <u>DeDop open source code base</u> after the end of the ACA-DDP project:
 - Drive the vision for the future of DeDop
 - Maintain the various DeDop tools
 - Merge patches provided by users community
 - Continue to improve the tool
 - Communicate via ESA (and other agencies) about DeDop
 - Keep training the young (and old!) generations of potential users

Nicolas Bercher

nbercher@along-track.com АLONG-TRACK S.A.S.

