ACCWA

Synergie Sentinel 1 / Sentinel 2 for the characterization of agricultural land conditions in the Kairouan plain.

S. Bousbih^(1,2), M Zribi⁽²⁾, Z. Kassouk⁽¹⁾, H. Zayani⁽¹⁾, R. Mabrouki, B. Mougenot⁽²⁾ and <u>Z. Lili Chabaane</u>⁽¹⁾ (1) : UCAR/ INAT/Lr GREEN-TEAM (2): CESBIO

- UCAR team working in ACCWA: some members from lab GREEN_TEAM (INAT) and 2 colleagues from INRGREF + PhD students, most of them are members of the LMI NAILA
- Lr GREEN-TEAM: Merguellil case study
 - Zeineb Kassouk (Remote Sensing, agricultural crop characterization)
 - Jalel Aouissi (Eco- Hydrology modeling)
 - Ines Oueslati (agricultural water use, irrigation)
 - Aicha Chahbi Bellakanji (remote sensing, yield estimation)
 - Mehdi Ben Mimoun (Agronomy, CC impacts and agriculture adaptation measures)
 - Hamadi Habaieb (Hydrology modeling)
 - Zohra Lili Chabaane (Remote Sensing, Bioclimatology, water management, agricultural water use)
- INRGREF: Lebna case study
 - Insaf Mekki (agricultural water use)
 - Rim Zitouna (Biclimatology)
- PhD Students:
 - Nesrine Farhani
 - Safa Bousbih
 - 4 new PhD Students (Emna Ayari, Hayfa Zayani + 2 others to be identified .)

ACCWA / UCAR TEAM: multidisciplinary team

Synergies between different methods, data, tools and programs

Ground measurements

Iniversité de Cart

Remote sensing

Modelling

Networ

travel time

Archives

Les inondations de septembre-octobre 1969 en Tunisie: Partie I: Etude pédologique par J. Pias

Partie II: Effets morphologiques par G. Stuckmann

décembre 1969

Estimated SWC (0-100cm) values using Ordinary Kriging

1st ACCWA- Meeting Tunis, November 12th, 2019

| 3

Merguellil CS: a pilot site for the characterization of agricultural land conditions by RS in collaboration with CESBIO

Large spatial and temporal scales

Synergy multi-sensors, multi-resolution

• Soil moisture;

- Agricultural crops identification;
- Soil characteristics (texture and roughness)
- Monitoring vegetation cover and tree plantations;
- Evaluation of the actual evapotranspiration
- Cereal yields estimation
- Agricultural water needs evaluation

Field data collection and protocole on the Merguellil site (with CESBIO)

- •single pilot site (SMAP/NASA, SMOS, SENTINEL, ASCAT/METOP)
- •Part of research networks (JECAM, SICMED, ..)
- •the flow measurements (Eddy covariance method, soil moisture, radiance, ITR)

ACCWA

Since 2008 :

- •8 à 12 images SPOT/year, 60 images ASAR/ENVISAT, 20 images TERRASAR-X,
- •LANDSAT image series since 2009, Série SPOT5 et SPOT4 take5, the SENTIENEL series 1 and 2 since their acquisitions

ACCWA

UCAR is involved in all WPs

- WP1: Know-how transfer
- WP2: EO / Soil Moisture
- WP3: EO / ET
- WP4: EO / VEG
- WP5: water use
- WP6: Yield estimation
- WP7: hazards: Leader
- WP8: Validation
- WP9: Climate Change Impact
- WP11: Technical Management

UCAR is Leader of WP7 and strongly involved in WP3, WP4, WP6, WP7 and WP8

Secondments 2019

Safa Bousbih (PhD Student) -> 2 months IsardSat Jalel Aouissi -> UCAM 1 month

Planned Secondments 2020

PhD Student to be identified (with Rim Zitouna)-> 2 months Labferer PhD student to be identified (with Mehdi Ben Mimoun) -> IsardSat / IRTA ?2 months PhD Emna Ayari (with Z Lili Chabaane)-> 2 months IsardSat PhD Hayfa Zayani (with Z Lili and Z Kassouk) -> 2 months IsardSat Nesrine Farhani (PhD Srudent) -> UCAM(2 months) Rim Zitouan -> Labferer 1 month Jalel Aouissi -> Agrhymet 1 month Zeineb Kassouk -> Agrhymet (1 month) Zohra Lili Chabaane -> IsardSat/ Labferer/ IRTEA ? (1 month) Ines Oueslati -> LabFerrer /IRTA? (1 month) Aicha Chabi -> IsardSat/ IRTA ?(1 month)

..... Insaf Mekki ?, Mehdi Ben Mimoun ? Hamadi Habaieb ?

ö ä z ol

Université de Carthage

Overview of GREEN-TEAM research investigations in Merguellil Area

	1973-2019	2006-2019	2011-2019	2008-2019	2018-2019		
Main Objective	Climatic Change and effect on fruit trees	IWRM	Early estimation of cereal yields	Spatial and temporal variabilities of soil characteristics and agricultural crops	Agricultural practices characterizatio		
Tools/ Methods	Climate Models	Eco- hydrology modelling (SWAT, WEAP, GR2R,)	Optic and rada (measurments			
Scale	Regional scale	watershed	Plaine Scale	Plaine Scale	Plaine scale		
		0					

CESBIO

GREEN-TEAM

1st ACCWA- Meeting Tunis, November 12th, 2019

Scientific context

Contribution of radar images

- Sensitivity to soil parameters
- Independence to climatic conditions
- High spatial and temporal resolution

Contribution of optical images

- Vegetation cover characterizing
- High spatial and temporal resolution

Satellite imagery

Launch Sentinel-1A : April 3th 2014 Sentinel-1B : April 25th 2016 Spatial resolution 10 up to 40 m Revisit 6 days Instrument Synthetic Aperature Radar with C-band

Launch

Sentinel-2A : June 23th 2015 Sentinel-2B : March 7th 2017 Spatial resolution 10 m up to 60 m Revisit 5 days Instrument Multi-spectral imager with 13 bands

Iniversité de

GREEN-TEAM

Why Sentinel constellation?

Sentinel-1

1. Systematic time series across several regions: 12 days to 6 days with S1A & B with time tracking applications

- 2. Free data access
- 3. Calibrated data
- 4. A wide swath, high spatial resolution Mode IW: 250 Km , pixel of 10 m
- 5. SAR interferometry (up to 12 or 6 days)
- 6. Accessible processing tools

Satellite data

- Optical and radar time series images derived from the Sentinel-1 and Sentinel-2 constellations over two agricultural period between 2015-2016 et 2016-2017, acquired over the Kairouan plain.

	1.1						201	5-201	6		÷						
		ж	ж	ж		ж	ж	ж	Ж			Ж	ЖK	ЖK			S-2
12/11/2015	02/12/2015	22/12/	2015	11/01/2	016	31/01/2016	20/02/	2016	11/03/2	016	31/03/2016	20/04	/2016	10/05/2	2016	30/05/2016	

Ground measurements

Which data? Soil moisture Thetaprobe measurements, roughness measurements with 1 m profiler, LAI measurements, vegetation height and water content

Thetaprobe measurements

Sites of Kairouan - 5 meteorological stations : air temperature (°C), relative moisture (%), wind speed (m/s), global radiation (W/m2) and precipitation (mm). 5 soil moisture stations measuring soil moisture and soil temperature

Hemispherical images

Specific measurements- Surveys and location of irrigated cereal and rainfed plots

Satellite data

- Optical and radar time series images derived from the Sentinel-1 and Sentinel-2 constellations over two agricultural period between 2015-2016 et 2016-2017, acquired over the Kairouan plain.

						201	5-201	6								
		ж	*	ж	Ж	ж	Ж	ЖК			.8 K	XK	жк			■S-2
12/11/2015	02/12/2015	22/12/	2015	11/01/2016	31/01/2016	20/02/	2016	11/03/20	16	31/03/2016	20/04,	/2016	10/05/2	2016	30/05/2016	

Which data? Soil texture measurements based on the Robinson pipette laboratory technique.

3 classes of clay content were identified over the reference fields :

- Sandy soils with low values of clay content :

15-30 %

- Loamy clay soils:
- 30-45 %
- -Clay soils:
- -45-60 %

احامعة قبطاب

Université de Carthag

Sensitivity analysis of S1 data: sensitivity to soil moisture

CESSIU

GREEN-TEAM

Sensitivity analysis of S1 data: sensitivity to soil roughness

Safa Bousbih (Thesis defense on 16 /12 2019)

^{rche} 1st ACCWA- Meeting Tunis, November 12th, 2019

Sensitivity analysis of S1 data: Sensitivity to vegetation parameters (LAI)

VV polarization

Soil moisture mapping

20/07/2016

GREEN-TEAM

Two specific soil moisture maps were selected to represent two different moisture conditions: a dry condition for 20/01/2016 and a wet condition for 24/12/2016

24/12/2016

Safa Bousbih (Thesis defense on 16 /12 2019)

Irrigation mapping

Clay content maps

Clay content maps using SVM (a) and RF (b) algorithms

The analyzes of the maps show a good agreement with the measurements on the reference plots. The validation of the maps show an overall accuracy of 63% using the SVM classification and 65% by the RF. Both classifications showed similar results.

Safa Bousbih (Thesis defense on 16 /12 2019)

ACCWA

annual crops in Kairouan plain

ment 1st ACCWA- Me**2** 2ng Tunis, November 12th, 2019 22

Seasonal agricultural Crops

Agricultural practices characterization

Tillage practices present a major element of crop management techniques. They can significantly alter the amount of rain and irrigation water available for plant growth (Ahuja et al., 1998). Knowing and detecting the type of tillage according to the type of crop is a very important element for predicting agricultural water use and crop yield and therefore the production potential of the farms

Data collection

Satellite data

Sentinel-2 (A and B) Treatment level : L2A

432 fields observations and 125 farmer surveys (Agronomic questionary)

Tillage detection

7 tillage maps, over the plain of Merguellil, are produced with an overall accuracy of 92.3% and a kappa coefficient of 0.68.

Tillage map overall the Merguellil plain (June 2018)

Detected tillage of the 2017-2018 agricultural season

Institut de Recherche pour le Développement FIRIANICE

ent 1st ACCWA- Meeting Tunis, November 12th,

