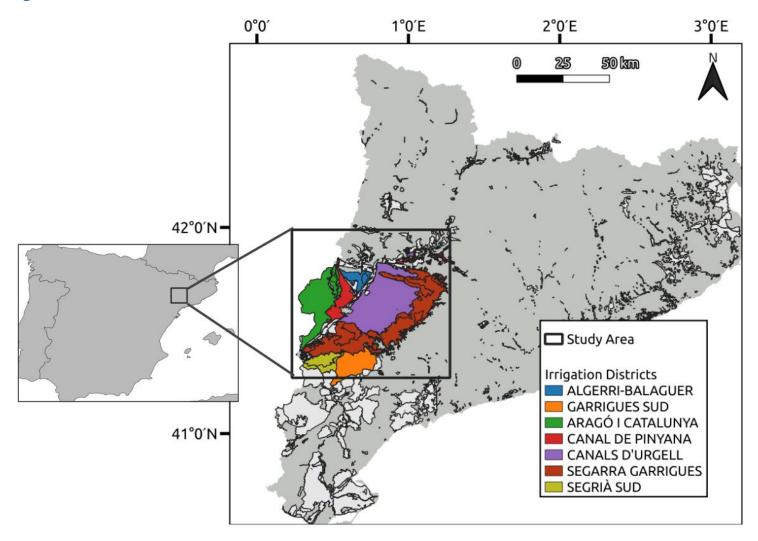
Classification of Different Irrigation Cases at Field Scale Using Annual Time-Series of Remote Sensing Data

H2020-MSCA-RISE-2018, 2019- 2023 Grant agreement no: 823965

Open Project Day

isardSAT, Barcelona | March 11th, 2022

Study Area



Framework

Input Data HYDROLOGICAL VARIABLES MODELLED DATA - Actual ET - Dispatch SM - LAI - Ks RAW DATA NDVI - SMAP SM - ET0 - LST **GROUND TRUTH**

Processing

Extracting ground truth field (shapes from SIGPAC)

2.Extracting Annual Time-series

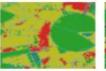
3. Gap Filling

Classification

- Different Models:
- Time series Forest
- ROCKET
- ResNET (Deep Learning)
- Train + Test with around 300 fields (3 different years: 2018 - 2019 -2020)
- Prediction (classification of unseeing time-series)
- 4. Outputs:
 - NOT IRRIGATED
 - DRIP
 - SPRINKLER
 - FLOOD

Post-processing

Aggregating at field scale (shapes from SIGPAC)



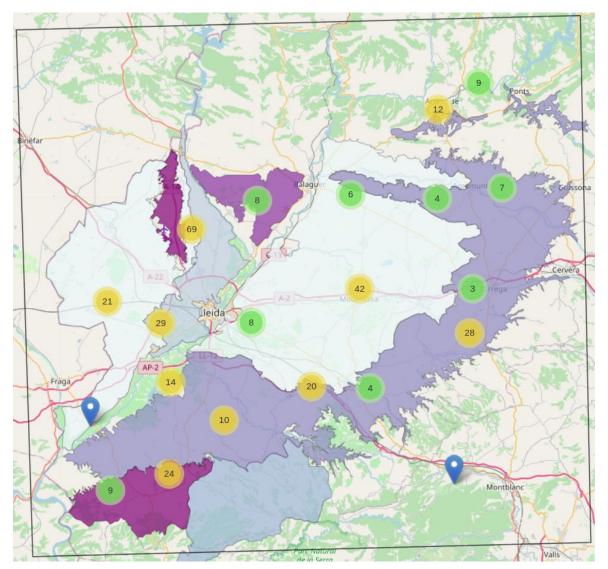
Temporal Post-processing

Correct one year if it shows unrealistic irrigation types when compared to other years.

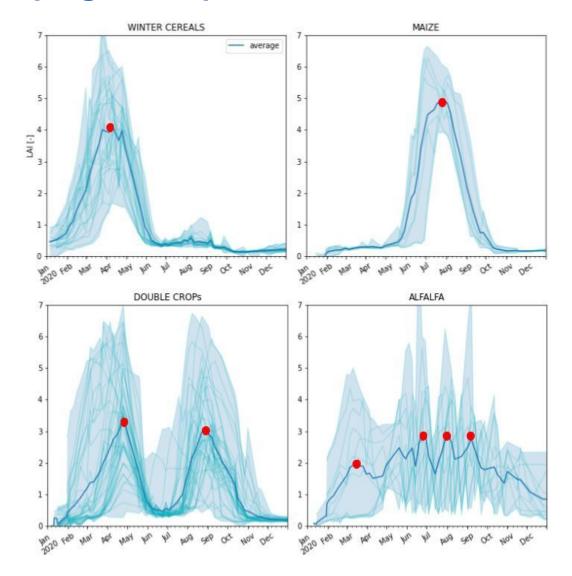
Corrections happens when the exception is:

- Modern Irrigation (if it is not the last year available)
- Traditional Irrigation OR Not Irrigated (if it is not the first year available)

Field Campaign - Distribution of Fields



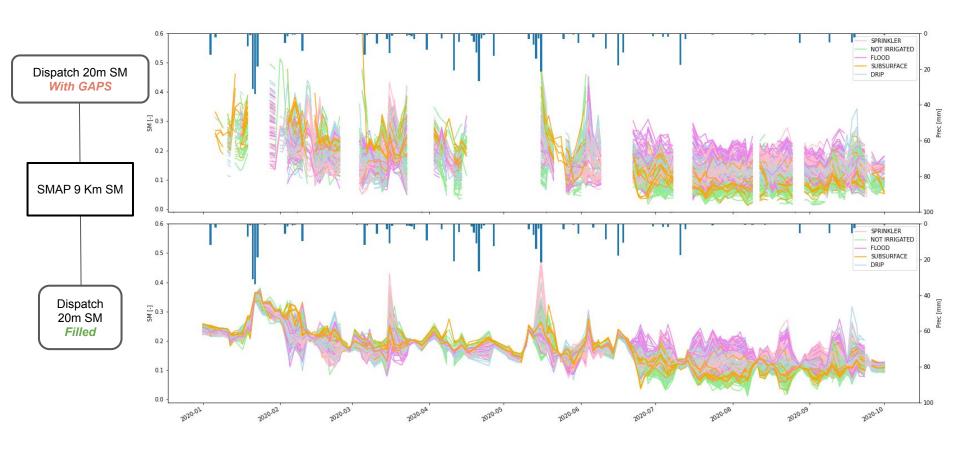
Field Campaign - Crop Detection



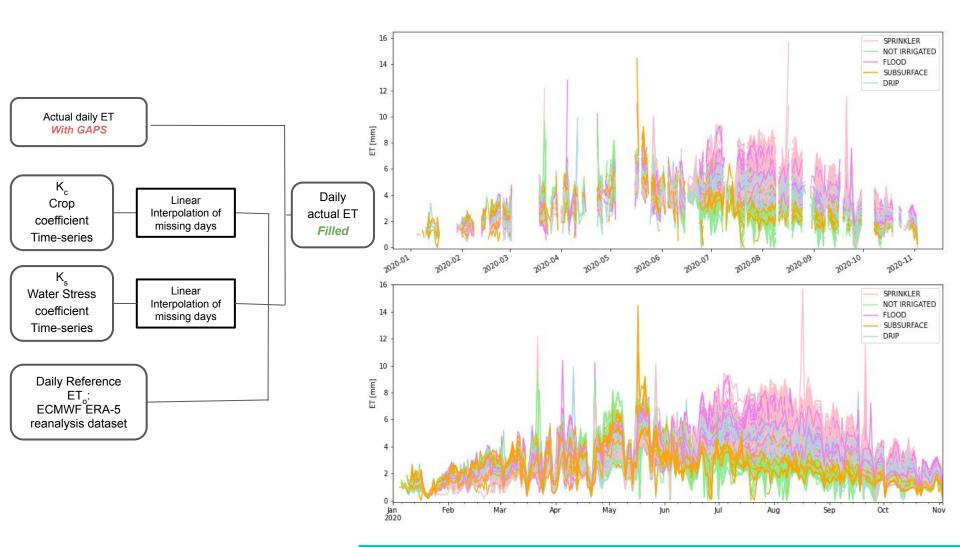
Field Campaign - Number of Fields

CROP TYPE	IRRIGATION TYPE	Numl	er of Fi	elds	FIELDS	PIXELS	
CROI TITE	IMMOATIONTITE	2018 2019		2020	TOTAL	TOTAL	
WINTER CEREALS	NOT IRRIGATED	40	36	40	116	27584	
WINTER CEREALS	FLOOD	9	9	9	27	444	
MAIZE	SPRINKLER	8	8	8	24	10950	
MAIZE	FLOOD	14	14	13	41	1322	
DOUBLE CROPS	SPRINKLER	55	56	56	167	43849	
	FLOOD	32	33	33	98	5859	
ALFALFA	SPRINKLER	7	7	7	21	3777	
	FLOOD	9	9	9	27	2733	
TREEs	NOT IRRIGATED	13	13	13	39	1578	
	DRIP	78	78	78	234	24201	
	FLOOD	18	18	18	54	1734	
VINEYARD	NOT IRRIGATED	7	7	7	21	867	
	DRIP	12	12	12	36	4599	
OLIVE	NOT IRRIGATED	17	17	17	51	6231	
OLIVE	DRIP	11	11	11	33	3201	
TOTAL		330	328	331	989	138929	

Input Dispatch SM



Input ETact



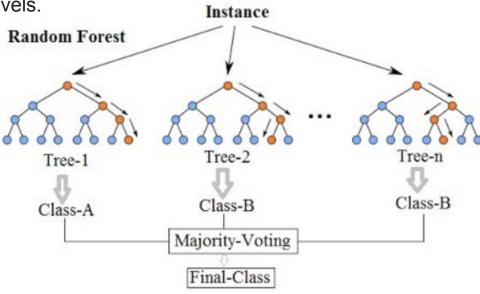
Al Models

Time Series Forest

Time series forest is a <u>random forest adapted to detect temporal features</u>.

Selected because:

- Widely used: used as a benchmark to test more advanced model(s).
- Computationally efficient.
- 3. **It avoids overfitting** (using strategies like bootstrap and random interval selection).
- 4. **Easy to inspect results**: Feature extraction = Interpretability.
- 5. **Easy to quantify results**: Confidence levels.



Source:

Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and feature extraction. Information Sciences, 239, 142-153.

Input ETact

Rocket (RandOm Convolutional KErnel Transform)

It is a <u>kernel-approach classification</u> inspired by convolutional neural network. It has only a single layer of convolution (NO learning of the weights) but with a large number of kernels, with their parameters randomly initialized (length, dilation, padding, weights and biases).

Selected because:

- 1. State-of-the-art accuracy
- 2. Low computational requirements.
- 3. Only one Hyperparameters (number of kernels).

	ROCKET
length	{7,9,11}
weights	$\mathcal{N}(0,1)$
bias	U(-1,1)
dilation	random
padding	random

Source:

Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5), 1454-1495.

Al Models

ResNET

It is a Deep Neural Network.

Selected because:

- State-of-the-art accuracy
- Best performing in tests with different number of databases from different disciplines.
- Can retrieve very complex features, it works very well with large Datasets.

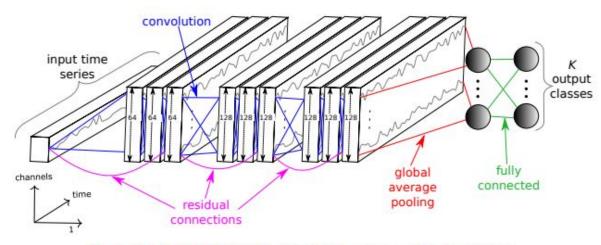


Fig. 6: The Residual Network's architecture for time series classification.

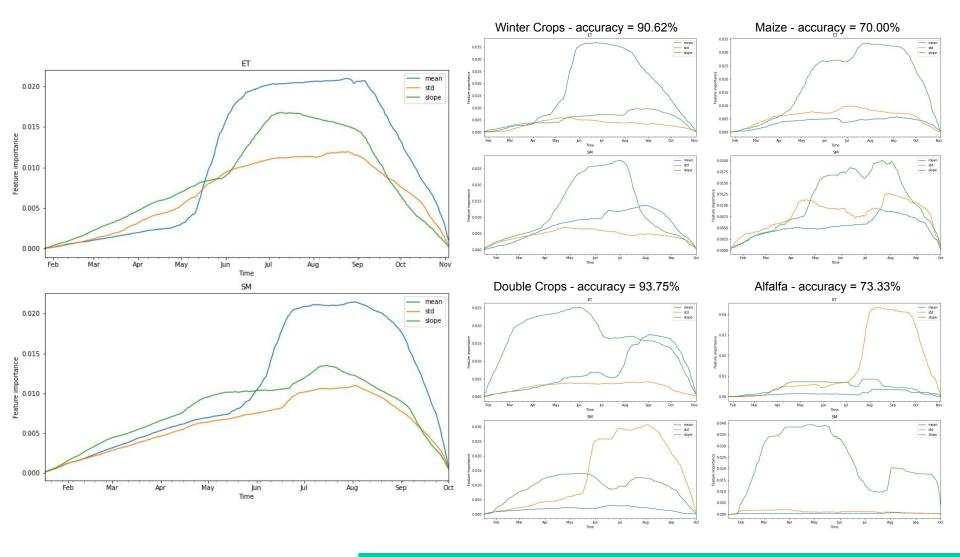
Source::

Wang Z, Yan W, Oates T (2017b) Time series classification from scratch with deep neural networks: A strong baseline. In: International Joint Conference on Neural Networks, pp 1578–1585.

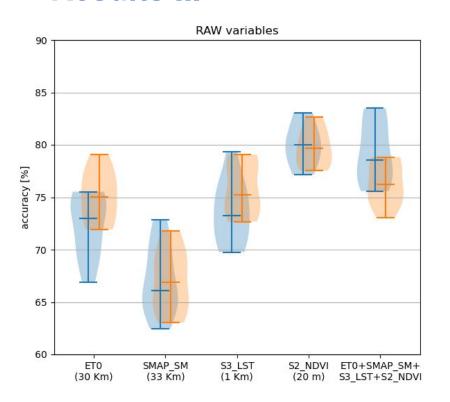
Results I

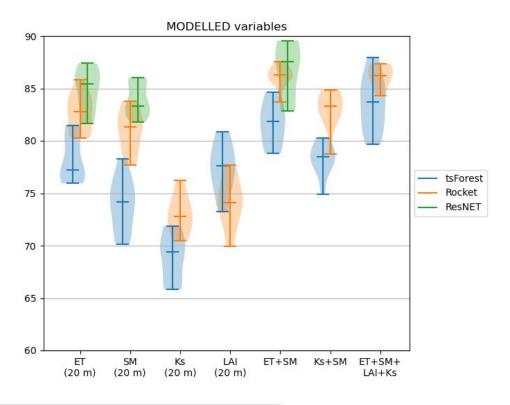
			RESULTS						
	Winter Cereals	Maize	Double Crops	Alfalfa	Fruit & Nut Trees	Olives	Vineyards	Aggregated Models	General Model
ET_a -TSEB	81.25%	48.82%	91.67%	72.00%	74.88%	74.33%	96.19%	78.15%	79.33%
ET _a -TSEB cropped	73.37%	58.82%	89.58%	70.00%	72.33%	% 70.00% 94.76%		75.41%	-
SM Dispatch	88.75%	76.47%	91.67%	66.67%	73.18%	73.33%	80.95%	78.36%	74.25%
SM Dispatch cropped	82.88%	70.00%	91.67%	66.67%	75.58%	64.67%	80.95%	78.26%	1.40
ET_a+SM	90.62%	70.00%	93.75%	73.33%	81.71%	.71% 69.67% 96.67% 83.39%		83.39%	81.89%
ET_a+SM cropped	86.88%	68.82%	91.67%	66.67%	78.45%	65.33%	100.00%	81.47%	(-)

Results II



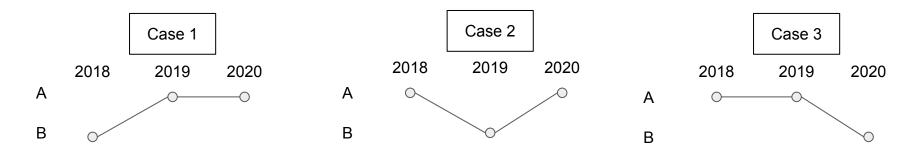
Results III





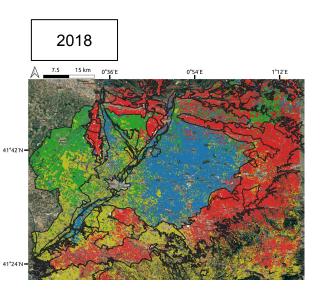
METRICS (%)	MODELS								
	tsForest	ROCKET	ResNET						
Accuracy	81.59 +/- 2.14	82.45 +/- 1.62	86.59 +/- 2.79						
Precision	81.73 +/- 1.90	83.28 +/- 1.62	87.39 +/- 2.26						
Recall	81.59 +/- 2.14	82.45 +/- 1.62	86.59 +/- 2.79						
Kappa	73.77 +/- 2.84	74.64 +/- 2.33	81.30 +/- 3.61						

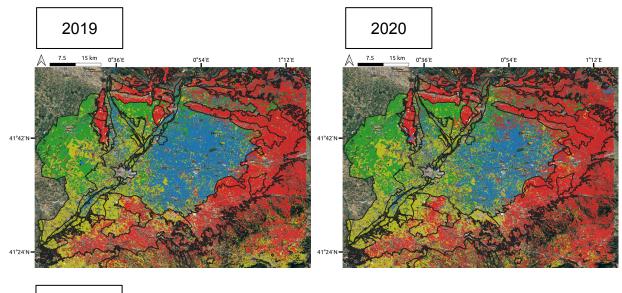
Post-Process

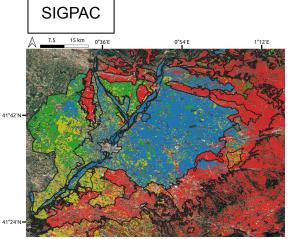


В	0 - NOT IRRIGATED			6 - DRIP			3 - SPRINKLER			2 - FLOOD		
A	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3	Case 1	Case 2	Case 3
0 - NOT IRRIGATED				Х	V	Х	Х	V	Х	V	V	V
6 - DRIP	X	V	Х				Х	V	X	Х	V	V
3 - SPRINKLER	X	V	X	Х	V	X				Х	V	V
2 - FLOOD	V	V	V	V	V	X	V	V	X			

Results IV

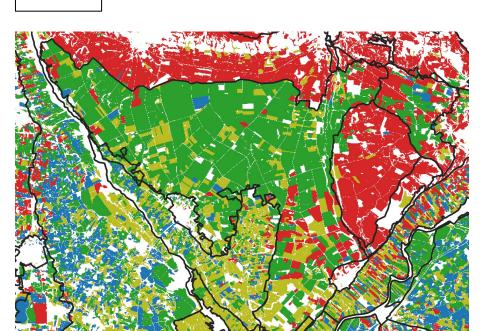




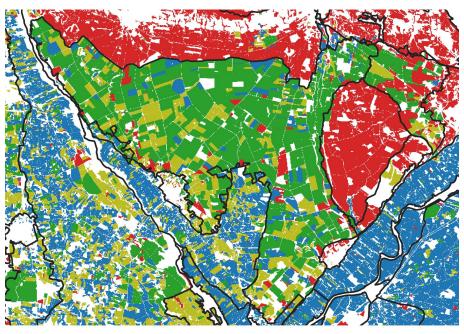


Results V - Algerri Balaguer

2020



SIGPAC





3 - SPRINKLER

Thank you!

