2nd Conference on SPACE STAR

Science, Technology, Applications & Regulation

October 18-20, 2023, Sousse, TUNISIA

Classification of Irrigation Systems at Field Level from Soil Moisture and Actual Evapotranspiration Time Series

Giovanni Paolini^{1,3,4}, **Maria Jose Escorihuela¹**, Olivier Merlin², Magí Pamies-Sans³, Joaquim Bellvert³

¹isardSAT, Barcelona, Spain ²CESBIO, Toulouse, France ³ IRTA, Lleida, Spain ⁴Universitat de Lleida, Lleida, Spain

Introduction

Why obtaining classification maps of irrigation systems? Mitigating water demands

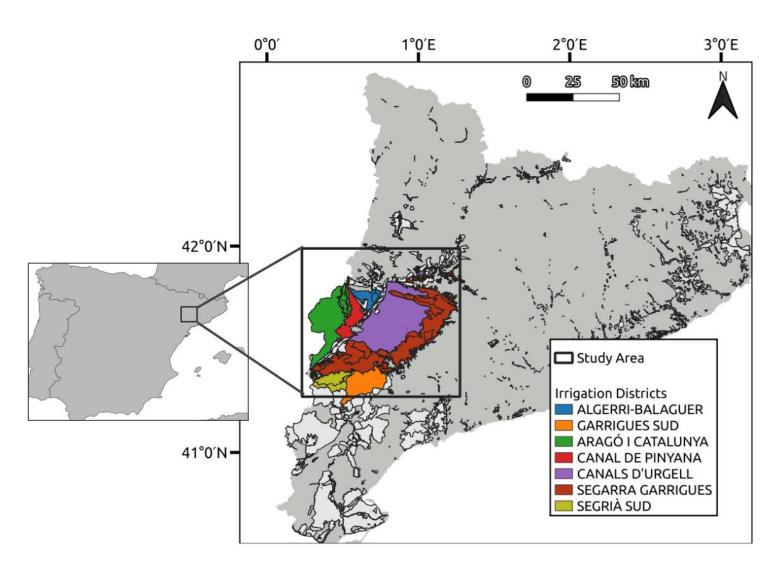
- 1. Replace the simplistic assumption of irrigation scenarios used in many Land Surface Models (LSM). -> reduce uncertainty.
- 2. Promote and supervise the shift towards more sustainable and efficient irrigation methods. -> optimize water use.

FLOOD

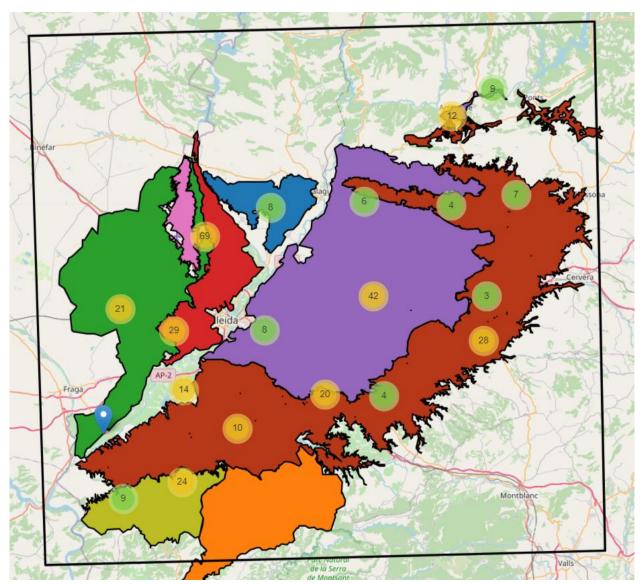
SPRINKLER

DRIP

Study Area



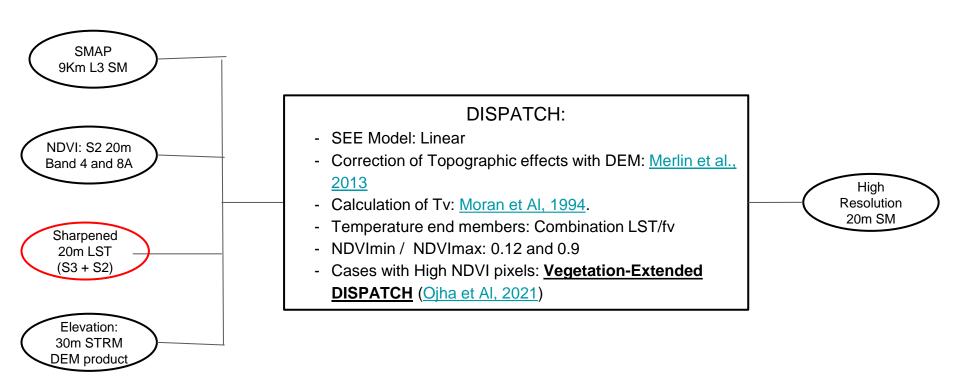
Field Campaign - Distribution of Fields



Field Campaign - Number of Fields

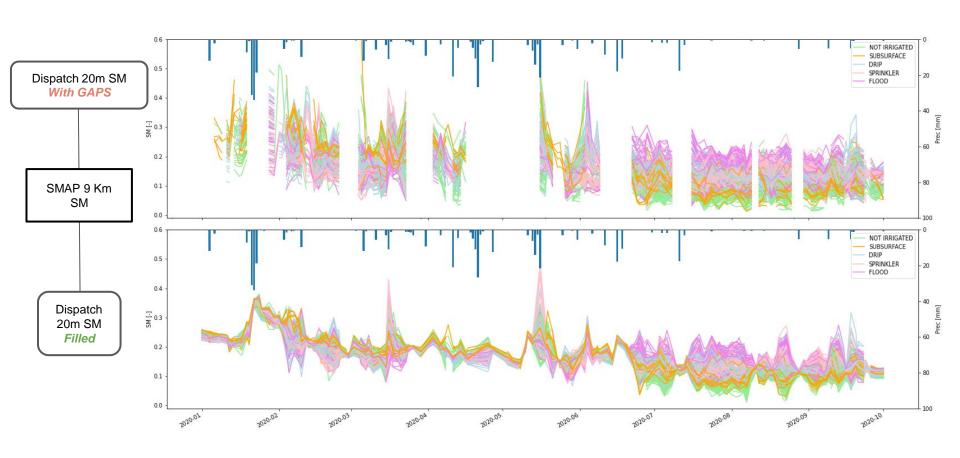
IRRIGATION SYSTEM	CROP TYPE	Number of Fields			FIELD	PIXEL
	CKOFTIFE	2018	18 2019 2		LEVEL	LEVEL
	FRUIT and NUT TREES	78	78	78	234	24201
DRIP	VINEYARD	12	12	12	36	4599
	OLIVE	11	11	11	33	3201
	MAIZE	8	8	8	24	10950
SPRINKLER	DOUBLE CROPS	55	56	56	167	43849
	ALFALFA	7	7	7	21	3777
	WINTER CEREALS	9	9	9	27	444
	MAIZE	14	14	13	41	1322
FLOOD	DOUBLE CROPS	32	33	33	98	5859
	ALFALFA	9	9	9	27	2733
	FRUIT and NUT TREES	18	18	18	54	1734
NOT IRRIGATED	WINTER CEREALS	40	36	40	116	27584
	FRUIT and NUT TREES	13	13	13	39	1578
	VINEYARD	7	7	7	21	867
	OLIVE	17	17	17	51	6231
TOTAL		330	328	331	989	138929

Input Dispatch SM

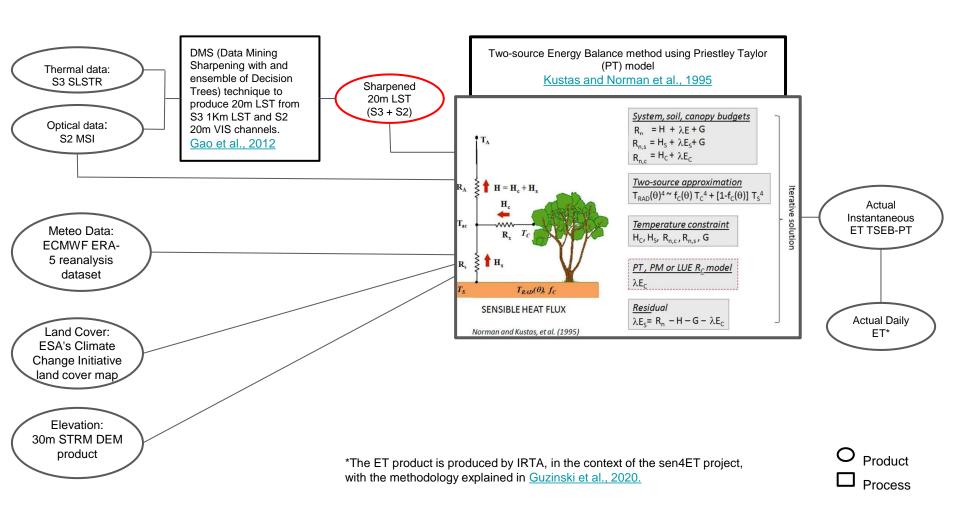


On going validation of the product with in-situ SM values in different sites in the area...

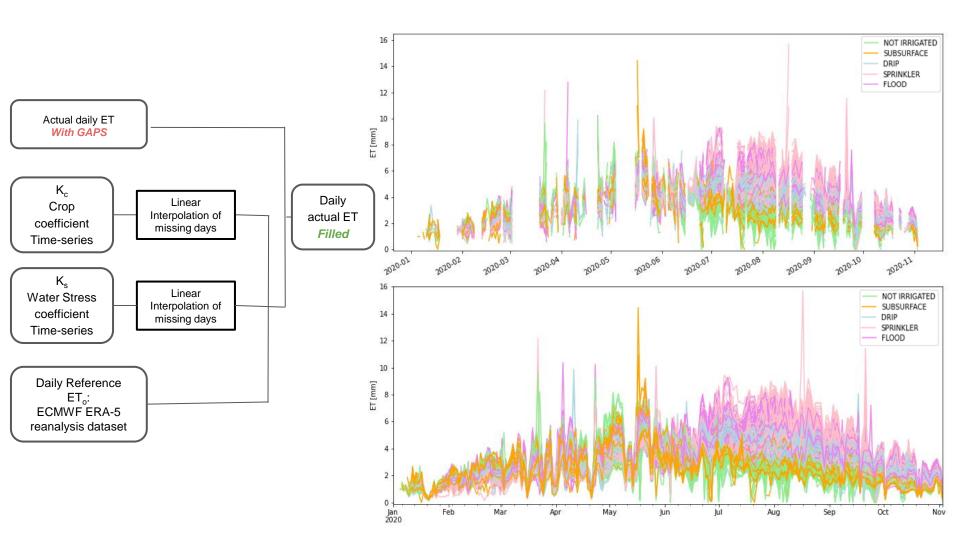
Input Dispatch SM



Input ETact



Input ETact



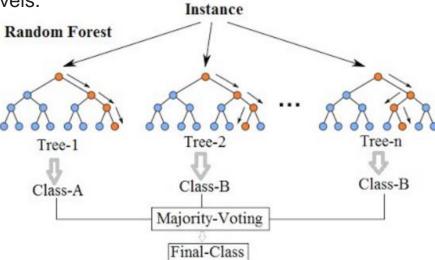
ML MODELS

Time Series Forest

Time series forest is a random forest adapted to detect temporal features.

Selected because:

- 1. Widely used: used as a **benchmark** to test more advanced models.
- 2. Computationally efficient.
- 3. It avoids overfitting (using strategies like bootstrap and random interval selection).
- **4. Easy to inspect results**: Feature extraction = Interpretability.
- 5. Easy to quantify results: Confidence levels.



Source:

Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and feature extraction. Information Sciences, 239, 142-153.

ML MODELS

Rocket (RandOm Convolutional KErnel Transform)

It is a <u>kernel-approach classification</u> inspired by convolutional neural network. It has only a single layer of convolution (NO learning of the weights) but with a large number of kernels, with their parameters randomly initialized (length, dilation, padding, weights and biases).

Selected because:

- 1. State-of-the-art accuracy
- 2. Low computational requirements.
- 3. Only one Hyperparameters (number of kernels).

	ROCKET		
length	{7,9,11}		
weights	$\mathcal{N}(0,1)$		
bias	U(-1,1)		
dilation	random		
padding	random		

Source:

Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge Discovery, 34(5), 1454-1495.

ML MODELS

ResNET

It is a Deep Neural Network.

Selected because:

- State-of-the-art accuracy
- **Best performing** in tests with different number of databases from different disciplines.
- Can retrieve very complex features, it works very well with large Datasets.

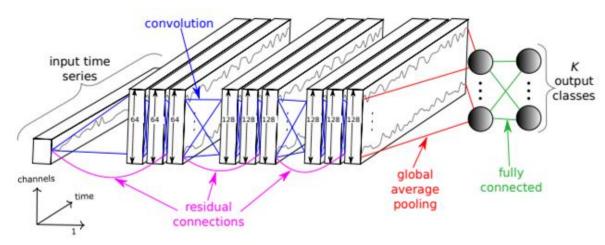


Fig. 6: The Residual Network's architecture for time series classification.

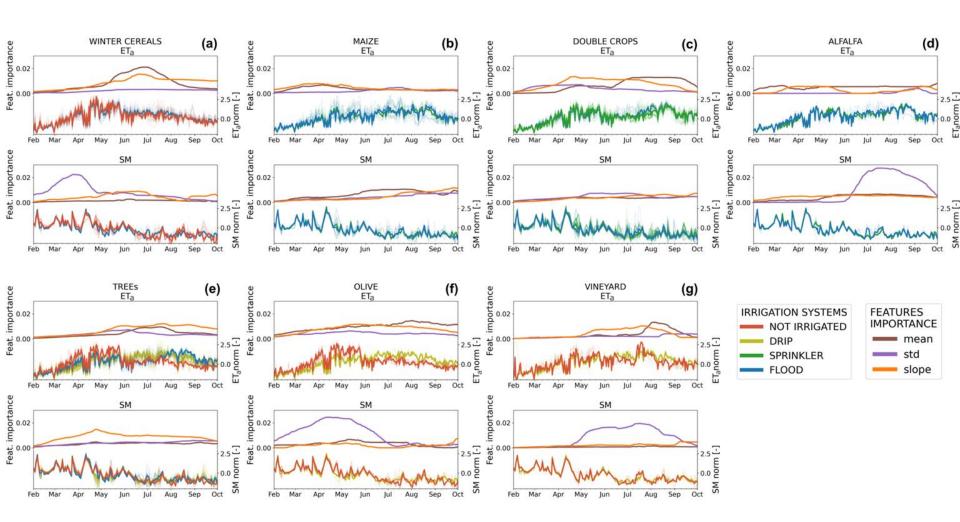
Source:

Wang Z, Yan W, Oates T (2017b) Time series classification from scratch with deep neural networks: A strong baseline. In: International Joint Conference on Neural Networks, pp 1578–1585.

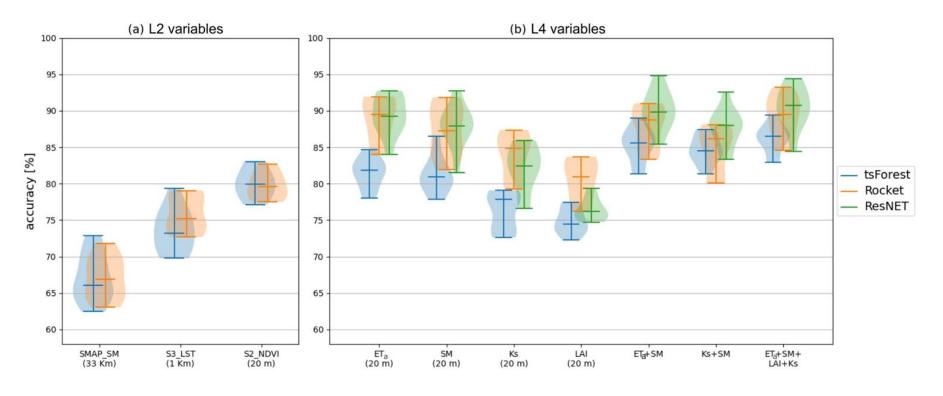
Results I

Variables	Crop types					RESULTS			
variables	Winter Cereals	Maize	Double Crops	Alfalfa	Fruit & Nut Trees	Olives	Vineyards	Aggregated Models	General Model
ET _a -TSEB	81.25%	48.82%	91.67%	72.00%	74.88%	74.33%	96.19%	78.15%	79.33%
ET_a -TSEB cropped	73.37%	58.82%	89.58%	70.00%	72.33%	70.00%	94.76%	75.41%	-
SM Dispatch	88.75%	76.47%	91.67%	66.67%	73.18%	73.33%	80.95%	78.36%	74.25%
SM Dispatch cropped	82.88%	70.00%	91.67%	66.67%	75.58%	64.67%	80.95%	78.26%	-
ET_a+SM	90.62%	70.00%	93.75%	73.33%	81.71%	69.67%	96.67%	83.39%	81.89%
ET_a+SM cropped	86.88%	68.82%	91.67%	66.67%	78.45%	65.33%	100.00%	81.47%	-

Results II

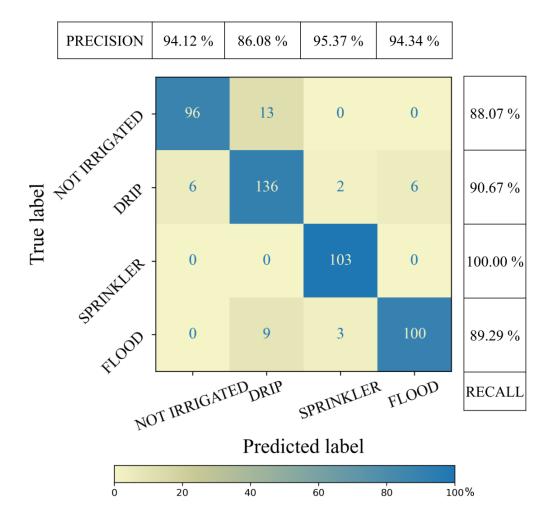


Results III



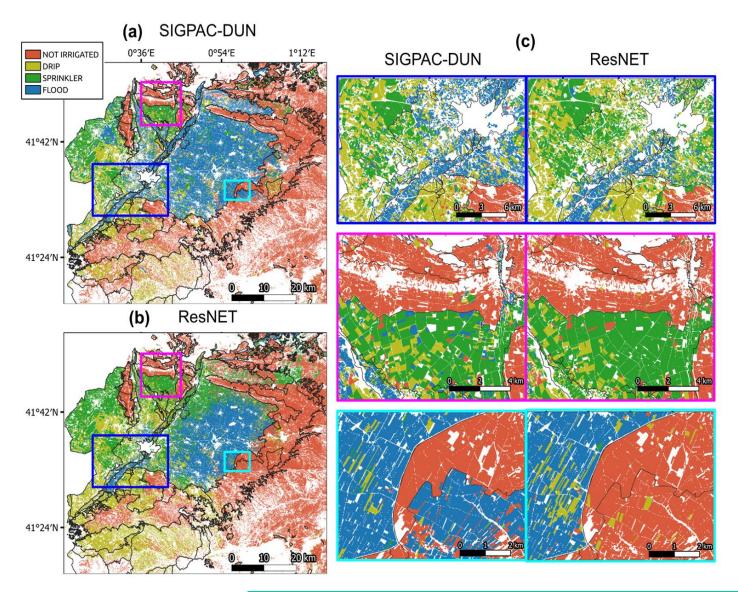
		MODELS	
METRICS (%)	tsForest	ROCKET	ResNET
Accuracy	81.59 +/- 2.14	82.45 +/- 1.62	86.59 +/- 2.79
Precision	81.73 +/- 1.90	83.28 +/- 1.62	87.39 +/- 2.26
Recall	81.59 +/- 2.14	82.45 +/- 1.62	86.59 +/- 2.79
Kappa	73.77 +/- 2.84	74.64 +/- 2.33	81.30 +/- 3.61

Results IV

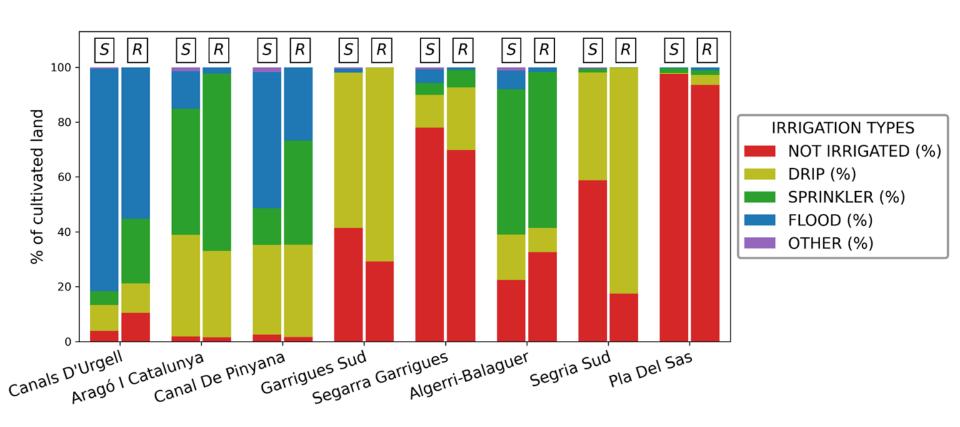


	MODELS				
METRICS (%)	tsForest	ROCKET	ResNET		
Accuracy	85.29 ± 2.41	87.56 ± 2.95	90.10 ± 2.70		
Average Precision	85.43 ± 2.53	88.80 ± 3.12	90.33 ± 2.78		
Average Recall	84.76 ± 2.51	86.81 ± 3.17	90.02 ± 2.76		

Comparison: SIGPAC 2021



Comparison: SIGPAC 2021



Comparison: Literature data (partial)

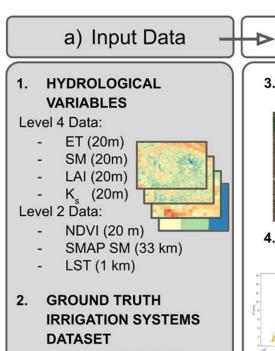
Irrigation District	IRR systems	Literature ¹	SIGPAC-DUN	ResNET
	FLOOD	90 %	81 %	55 %
Canals d'Urgell	DRIP	4 %	10 %	11 %
	SPRINKLER	2 %	5 %	24 %
	NOT IRRIGATED	0 %	4 %	11 %
	FLOOD	79 %	50 %	27 %
Canal de Pinyana	DRIP	10 %	33 %	34 %
	SPRINKLER	10 %	13 %	38 %
	NOT IRRIGATED	0 %	3 %	2 %
	FLOOD	18 %	14 %	2 %
Canal d'Aragó i Catalunya	DRIP	28 %	37 %	32 %
	SPRINKLER	54 %	46 %	65 %
	NOT IRRIGATED	0 %	2 %	1 %

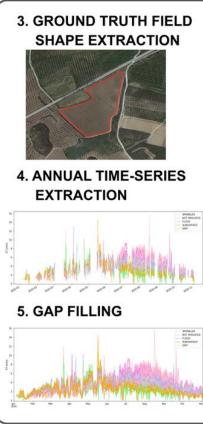
¹ Literature are administrative data taken from [1] for "Canal d'Aragó i Catalunya" and from [2] for "Canals d'Urgell" and "Canal de Pinyana".

^[1] J. Dari, L. Brocca, P. Quintana-Seguí, M. J. Escorihuela, V. Stefan, and R. Morbidelli, "Exploiting high-resolution remote sensing soil moisture to estimate irrigation water amounts over a mediterranean region," *Remote Sensing*, vol. 12, p. 2593, 8 2020.

^[2] L. Cots Rubió, J. Monserrat Viscarri, and J. Barragán Fernández, "El regadiu a lleida. resultats de diverses avaluacions a la zona regable dels canals d'urgell (lleida)," Quaderns agraris, 2014, núm. 36, p. 23-50, 2014.

Summary: Framework





b) Processing

6. AI MODELS SELECTION:

c) Classification -

- Time series Forest
- ROCKET
- ResNET (Deep Learning)

7. TRAIN + TEST DATASET

> 300 fields collected for 3 different years (total of around 900 time-series samples).

8. PREDICTION

Classification of time-series to create annual Irrigation types maps for the entire study area.

9. OUTPUTS

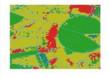
- Not Irrigated
- Drip
- Sprinkler
- Flood

10. LABEL AGGREGATION

→ d) Post-processing

All pixels contained in the same field get same irrigation type (from majority of prediction).

One field = One irrigation type.



11. TEMPORAL POST-PROCESSING

Comparison of all years: correct unrealistic irrigation types when a single year is different.

2nd Conference on SPACE STAR

Science, Technology, Applications & Regulation

October 18-20, 2023, Sousse, TUNISIA

Thank you!

Any questions?

